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Drug Discovery is a fundamental and ever-evolving field of research. The design of new candidate mole-
cules requires large amounts of time and money, and computational methods are being increasingly
employed to cut these costs. Machine learning methods are ideal for the design of large amounts of
potential new candidate molecules, which are naturally represented as graphs. Graph generation is being
revolutionized by deep learning methods, and molecular generation is one of its most promising appli-
cations. In this paper, we introduce a sequential molecular graph generator based on a set of graph neural
network modules, which we call MG2N2. At each step, a node or a group of nodes is added to the graph,
along with its connections. The modular architecture simplifies the training procedure, also allowing an
independent retraining of a single module. Sequentiality and modularity make the generation process
interpretable. The use of Graph Neural Networks maximizes the information in input at each generative
step, which consists of the subgraph produced during the previous steps. Experiments of unconditional
generation on the QM9 and Zinc datasets show that our model is capable of generalizing molecular pat-
terns seen during the training phase, without overfitting. The results indicate that our method is compet-
itive, and outperforms challenging baselines for unconditional generation.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Graph generation is a complex problem with several real-world
applications, and many different approaches have been devised for
solving it. Classical methods resorted to random mathematical
models: The Erdös–Rényi model [1] was the first approach in this
direction. Since Erdös–Rényi graphs tend to have unrealistically
low clustering coefficients, especially with respect to community
graphs, two methods were later developed, mainly to obtain more
realistic small-world networks: the growth-based Barabási–Albert
model [2], and the Watts–Strogatz rewiring model [3]. The recent
developments in machine learning have stimulated its application
to the field of graph generation. Deep learning techniques, indeed,
can capture the characteristics of a given domain from a set of
examples, which are then exploited to generate new graphs. Vari-
ational Auto-Encoders (VAEs) [4] were the first neural network
models to be employed for this purpose [5] [6]. The success of Gen-
erative Adversarial Networks (GANs) [7] in image generation has
led to replicate the same adversarial approach for graph–struc-
tured data [8] [9]. This approach can be improved by adding con-
straints to the adversarial learning [10]. The different nature of
the problem, though, has encouraged the development of alterna-
tive solutions as well. While VAEs, by sampling representations
from a continuous latent space, can generate graphs as unitary
entities, many methods tackle the problem with a sequential
approach. The construction of a graph becomes, therefore, a
sequence of decisions, in which a node or a group of nodes is added
to the graph at each step. On the one hand, many methods make
use of Recurrent Neural Networks (RNNs) to handle the decision
sequence [11–13]). On the other hand, Graph Neural Networks
(GNNs) [14], with their capability of processing graph-structured
data without loss of connectivity information, allow to build very
powerful generative models. In particular, at each step, GNNs can
exploit all the information contained in the partial graph generated
by the previous steps, while recurrent models typically rely only on
the sequence of previous decisions. In principle, this holds true for
any GNNmodel, including Graph Nets [15], GraphSAGE [16], Gated
Graph Sequence Neural Networks [17], Message Passing Neural
Networks [18], and Graph Convolution Networks [19] [20] [21].
The only approach of this type we are aware of is DeepGMG [22],
based on Graph Nets [15].

The generation of molecular graphs is a complex task, which
can lead to the development of new instruments for drug discov-
ery, potentially cutting the huge costs, in terms of both time and
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money, of that fundamental research process [23]. The space of
molecular graphs is virtually infinite, and even constraining the
size of molecules to few atoms, the number of theoretically possi-
ble compounds is overwhelming. Efficient automatic generative
techniques are required for the exploration of such huge space,
and deep generative models represent ideal candidates. Using
SMILES notation [24], molecules can be generated as sequential
objects. This approach has been carried out with VAE models
[25], also exploiting the grammar of the SMILES language [26]
[27]. However, SMILES strings do not preserve the full connectivity
information, as molecules are more naturally represented as undi-
rected graphs, with finite (and relatively small) sets of vertex and
edge types. Graph–based VAEs have been employed in the genera-
tion of molecular graphs [28]. Junction-Tree VAEs build graphs by
connecting pre–extracted structural motifs [29], an approach
which has been recently extended to larger molecules and poly-
mers by making the VAE hierarchical [30]. This approach can also
be improved by exploiting the valence histogram of each atom
[31]. Recently, statistical flow models, characterized by an invert-
ible encoder/decoder, have been developed [32]. Graph GANs have
been employed for the generation of molecules, handling the deci-
sions with Reinforcement Learning (RL) techniques [33] [34].
Finally, the above mentioned approach based on Graph Nets have
also been applied to this task with promising results [22].

In this work, we present a sequential molecular graph generator
based on GNNs [14], which we call Molecule Generative Graph
Neural Network (MG2N2). A single node is added and connected
to the graph, at each step. The method focuses on one node at a
time, and generates its neighbors before processing the following
node, preventing disconnected components from being created.
Similarly to GraphRNN [11], we follow a Breadth First Search
(BFS) ordering to decide which nodes to expand first. Edges are
generated in parallel rather than sequentially, making the
approach less computationally demanding. The control flow in
MG2N2 depends on decisions implemented by three GNN modules.
The sequential and modular nature of our method makes it inter-
pretable. As previously mentioned, at each step, GNNs exploit all
the information contained in the subgraph generated until that
step. Gumbel softmax [35] output layers allow the networks to
be trained over discrete stochastic distributions. Moreover, the
modules are trained independently of each other: This feature sim-
plifies the learning process and allows to retrain each module inde-
pendently. The GNN model used in this work was derived from the
original GNN approach [14], which was proved to be a universal
approximator on graphs [36]. This property ensures that the GNN
model is general enough to be able to make the complex decisions
that the modules must implement.

The contributions of this work consist in a new sequential gen-
erative model for molecular graphs, MG2N2, and its experimental
evaluation on two well-known benchmarks for the generation of
small organic molecules, the Quantum Machine 9 (QM9) and Zinc
datasets. The main novelty of our approach consists in using the
GNN framework for molecular graph generation, with a modular
architecture, in order to maximize the information and make the
generative model flexible. The results show that the proposed
approach outperforms very competitive baselines in the task of
unconditional generation. The experiments also clarify the main
properties of the method and show that MG2N2 is capable of gen-
erating molecules with chemical characteristics similar to those of
the original datasets.

The rest of this paper is organized as follows. A short descrip-
tion of the GNN model used in this work is provided in Section 2.
Section 3 presents and discusses the generative algorithm and its
implementation with neural networks. The experiments and their
results are described and commented in Section 4. Our conclusions
are drawn in Section 5.
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2. The GNN model

The Graph Neural Networks used in this paper are based on the
original work [14], to which we redirect for a detailed mathemat-
ical formulation of the model. The implementation is described in
the following. Each graph G ¼ ðV ; EÞ is composed of a set of vertices
V and a set of edges E#V � V . Each vertex v i 2 V is labeled with a
vector of attributes li. Each edge ðv i;v jÞ 2 E is labeled with a vector
of attributes ei;j. Based on E, a neighborhood function, assigning a
set of neighbors Neðv iÞ to each vertex v i 2 V is defined as
Neðv iÞ ¼ fv j : ðv j;v iÞ 2 Eg.

A state si is assigned to each vertex v i 2 V . It is initialized as
s0i ¼ li. The state of all the vertices is then updated iteratively,
and in parallel, until convergence and/or a maximum number of
iterations are reached. During this process, each vertex communi-
cates with its neighbors by sending and receiving messages. The
state ski of vertex v i, at step k, is calculated as in Eq. (1), based on
its state at the previous step sk�1i and the messages coming from
its neighbors v j 2 Neðv iÞ.

ski ¼ Fðsk�1i ; AðfMðv i;v j; kÞ : v j 2 Neðv iÞgÞÞ ð1Þ
In Eq. (1), some message passing function M defines the mes-

sage sent from v j to v i at step k. A neighborhood aggregation func-
tion A defines how the messages coming from all the neighbors of
v i are aggregated. Finally, a state updating function F defines how
the new state is calculated. In principle, all of these functions could
be learnt by neural networks. In earlier models [37], M was imple-
mented by a MultiLayer Perceptron (MLP), while the other two
functions were kept fixed. In this work, we opted for learning F
with an MLP, while keepingM and A fixed. This choice is also in line
with other recent developments, which are broadly summarized in
[15]16. In particular, we defined M as the concatenation of the
state of the source node sk�1j and the label ei;j of the edge ðv j; v iÞ,
as shown in Eq. (2).

Mðv i; v j; kÞ ¼ ðsk�1j ; ei;jÞ ð2Þ
Two different neighborhood aggregation functions were

employed, defined as either the arithmetic mean or the element-
wise sum of the incoming messages, as shown in (3).

AavgðfMðv i;v j; kÞ : v j 2 Neðv iÞgÞ ¼ 1
jNeðv iÞj

X

j:v j2Neðv iÞ
Mðv i;v j; kÞ

AsumðfMðv i; v j; kÞ : v j 2 Neðv iÞgÞ ¼
X

j:v j2Neðv iÞ
Mðv i; v j; kÞ

ð3Þ

Therefore, we can introduce a hyperparameter coefficient a
which allows us to choose between the aggregation functions
Aavg and Asum, by simply assigning it the values 1=jNeðv iÞj or 1,
respectively. As a consequence, the final form of (1) can be written
as in (4).

ski ¼ Fðsk�1i ; a
X

j:v j2Neðv iÞ
ðsk�1j ; ei;jÞÞ ð4Þ

The state updating process is stopped when either state conver-
gence or a maximum number of iterations k ¼ kmax are reached.
State convergence is assumed to happen when the distance
between the current state and the previous state becomes negligi-
ble: kski � sk�1i k < �. � and kmax are set as hyperparameters, k � k is
the Euclidean norm.

The output y 2 Rp is then determined by an output function O
which depends on the type of problem at hand. In graph-based
problems it is defined on the whole graph G, in node-based prob-
lems it is defined on single vertices v i 2 Vout #V , while in edge-
based problems it is defined on single edges ðv i;v jÞ 2 Eout # E,
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where Vout and Eout are respectively the subset of vertices and the
subset of edges for which an output is defined.

In this work, the problem of graph generation is divided into
three classification subtasks. One of them is node-based while
the other two are edge-based. In the former, the output function
is defined as in Eq. (5), while in the latter, the output function is
defined as in Eq. (6).

yi ¼ Oðsk�i Þ ð5Þ

yi;j ¼ Oðsk�i ; sk
�

j ; ei;jÞ ð6Þ
In both equations, k� represents the last iteration of Eq. (4),

determined by one or both of the stopping conditions. The function
O is implemented by an MLP, which is put in cascade to the state
network. Learning is achieved by comparing, through a loss func-
tion E, the supervision y to the output ŷ produced by the output
network. The network weights are updated by Backpropagation
Through Time [38].

3. Method

Our method consists in a graph generation algorithm tailored to
the production of small organic molecules, and its implementation
with GNNs. Subsection 3.1 describes the algorithm, while the
implementation is presented in Subsection 3.2. The details about
preprocessing are contained in SubSection 3.3, while Subsection
3.4 deals with node ordering issues.

3.1. Generation algorithm

The generation of a labeled graph G ¼ ðV ; EÞ is handled as a
sequential process, starting with an initially empty E and with a
single vertex V ¼ fv0g. The label l0 of v0 is sampled from a distri-
bution of labels D0, which is learned from the training set. Each
step consists in adding a new node to the graph and connecting
it to the other nodes. The algorithm focuses on one node v i at a
time, generating all its neighbors before focusing on the following
node i ¼ iþ 1. This process will be referred to as node expansion.
Nodes are indexed according to the order in which they have been
generated, so that, for instance, the third generated node v3 will
always be the fourth node to be expanded (v0 is the first). The pro-
cess stops when all the nodes have been expanded (i > jV j) or
when the maximum number of nodes has been reached
(jV j ¼ jVmaxj).

As a new node v j is generated, first it is connected to the node v i

which is being expanded, then it can be linked to the other vertices
V n fv i;v jg. While the set of edges generated in the latter phase can
be empty, the ðv i;v jÞ edge is always generated. This constraint
ensures that the generated graph is always connected, without
impairing generality: any graph can still be produced.

We can define three problems that must be solved to carry out a
generative step. Each problem corresponds to a function the model
will provide: node generation (P1), first edge classification (P2),
additional node linking (P3).

� P1 decides whether to expand v i with a new neighbor node v j

or to stop its expansion. If v j is generated, P1 also returns its
label lj.
� P2 is called after a new node v j has been generated. It determi-
nes the label ei;j of the edge ðv i;v jÞ.
� P3 is called after a new node v j has been generated and con-
nected to v i. It determines the existence of any possible edge
connecting v j to any other vertex vk 2 V n fv i;v jg. The labels
of all the generated edges are also returned. All the edges are
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processed in parallel. The main drawback of this approach is
that the dependencies between edges are ignored, but it also
brings the advantages of avoiding edge ordering biases and of
significantly reducing the time cost.

The generation algorithm is summarized in Algorithm 1.

Algorithm 1. Graph generation algorithm.

procedure GenerateG ¼ ðV ; EÞ
V  fv0g; l0 � D0

E £
i 0
j 1
while ði < jV jÞ ^ ðjV j 6 jV jmaxÞ do
gd P1ðV ; E; iÞ
while gd – stop do
V  V [ fv jg; lj  gd
E E [ fðv i;v jÞg
ei;j  P2ðV ; E; i; jÞ
for k 2 ½0; j� 1�; k– i do .Parallel Execution
ld P3ðV ; E; k; jÞ
if ld – disconnected do
E E [ fðvk;v jÞg
ek;j  ld

end if
end for
j jþ 1
gd GeneratorDecisionðV ; E; iÞ

end while
i iþ 1

end while
return G ¼ ðV ; EÞ

end procedure
3.2. Implementation with Graph Neural Networks

In the proposed approach, each of the functions P1; P2; P3
described in SubSection 3.1 is implemented by a dedicated GNN
module, which will be referred to as M1, M2, M3, respectively.
Each of the modules is trained separately, and one step at a time,
assuming the other two modules’ decisions to always correspond
to the ground truth. This is a strong assumption, which will pre-
vent the model from exploring possible different solutions, but it
dramatically simplifies the training procedure. Another advantage
of this paradigm is the fact that, each being trained separately from
the others, the modules can be recombined to build new versions
of the model. If a module needs to be optimized there is no need
of re-training the other two.

In order to generate labeled graphs, we need to make some
assumptions on the nature of vertex and edge labels. Three main
cases can be identified: unlabeled graphs, graphs with continuous
vertex and edge labels, graphs with a finite set of vertex and edge
types. In this work, we will focus on the third case, which corre-
sponds to the typical setting in molecule generation problems.
Thus, in the following, we assume that the label li of any vertex
v i belongs to a finite set li 2 Tv , the label ei;j of any edge ðv i; v jÞ
belongs to a finite set of types ei;j 2 Te, and Tv and Te are defined
by the dataset.

In the proposed approach, the GNN modules generate nodes
and edges along with their labels. With reference to Algorithm 1,
the following holds.
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� P1 faces a node-based classification problem, as it decides
whether to stop the expansion of the current node v i or to gen-
erate another neighbor v j, and, in case, which label to assign to
v j. The set of output vertices of M1 consists only of
v i : Vout ¼ fv ig. The output classes correspond to the union of
the stop decision to the set of vertex types fstopg [ Tv .
� P2 deals with an edge-based classification problem, since it gen-
erates the label of the edge connecting the vertex being
expanded v i and its new neighbor v j. The set of output edges
of M2 consists only of this edge Eout ¼ fðv i;v jÞg. The output
classes correspond to the set of edge types Te.
� P3 works on an edge-based classification problem, since it pre-
dicts the existence, and, in case, the label, of every possible edge
connecting the new vertex v j to the other nodes in the graph,
except the node being expanded v i. These calls are parallelized
and integrated in a single prediction from M3. This idea has the
drawback of considering each predictable edge as if it were
independent from the other predictable edges, but it also allows
to avoid the biases introduced by taking the decisions in
sequence and it speeds up the procedure. To do so, the graph
G is extended with a set of provisional edges
Ep ¼ fðvk;v jÞ : vk 2 V n fv i;v jgg. The module M3 takes in input
the new graph G0 ¼ ðV ; E0Þ : E0 ¼ E [ Ep. The set of output edges
for M3 is Eout0 ¼ Ep. The output classes correspond to the union
of the disconnected decision to the set of edge types
fdisconnectedg [ Te.

An example step of this algorithm is visually summarized as a
flowchart in Fig. 1.

To learn a stochastic behavior from the supervisions, which are
samples from a categorical distribution, we resorted to a Gumbel
softmax output layer [35], based on the Gumbel-Max method for
sampling from discrete distributions [39,40].

This approach allows to backpropagate through an arbitrarily
close approximation of the categorical distribution. The softmax
can be annealed, by decreasing a temperature parameter s, from
a less accurate approximation, which tends to a uniform distribu-
tion for s!1, and to the discrete distribution itself for s! 0.
Lower temperatures come at the cost of an increasing gradient
variance. The choice of two parameters smax and smin, and a curve,
will determine the annealing path. Annealing while training has
the positive effect of encouraging the exploration of alternatives
to the decision with the highest estimated probability in the early
phases, to then converge to more canonical decisions in the final
training epochs, when the estimation of the class probabilities
has gained higher reliability. This is very important to prevent
the networks from learning repetitive patterns, and to avoid mode
collapse (i.e. generating always vertices of the same type, based on
the highest prior probability).
3.3. Graph Preprocessing

To build the training, validation, and test sets for M1, M2, M3,
the molecules from the dataset under analysis are pre-processed.
For each generative step, we need an input graph, the index of
the focus node, and a supervision. Each molecular graph
G ¼ ðV ; EÞ is decomposed in a sequence of incomplete graphs, one
for each generative step.

For M1, the sequence is composed of n ¼ 2jV j � 1 graphs. The
first graph contains only one node G0 ¼ ðV0 ¼ fv0g; E0 ¼ fgÞ, any
intermediate graph Gi ¼ ðVi; EiÞ corresponds to an incomplete sub-
graph of G;Gi ¼ ðVi 	 V ; Ei 	 EÞ, and the last graph is complete
Gn�1 ¼ G. For M2 and M3, the sequences are composed of
n ¼ jV j � 1 graphs, because M2 and M3 are not called after the
245
jV j stop decisions from M1 (see Algorithm 1). The graphs
Gi ¼ ðVi 	 V ; Ei 	 EÞ acquire nodes and edges as i grows.

The sets are built so that graphs from the same generative
sequence (which correspond to different levels of completion of
the same original graph) belong to the same set (and to the same
batch). This is particularly important to avoid evaluation biases
deriving from testing or validating on examples which have
slightly different replicas in the training set.

3.4. Node ordering

To define the generative sequences of the graphs, a node order-
ing needs to be established. This will determine the order in which
the nodes of each graph must be generated, and, consequently, the
sequences of input graphs and supervisions described in Subsec-
tion 3.3. The model is expected to learn this generative strategy
from the training set, so that, for instance, a training set in which
carbon atoms have higher priority will teach the model to generate
carbon neighbors first. Theoretically, being V a set with no given
ordering, the model would benefit from being trained on any pos-
sible node ordering. Since this is impossible from a computational
point of view, some constraints must be imposed to reduce the
number of orderings from oðjV j!Þ to a computationally feasible
level. In this work we chose a Breadth First Search (BFS) strategy,
which has the additional benefit of reducing the number of link
predictions needed at each step [11]. Among the nodes at the same
depth level in the BFS tree, node types with lower average central-
ity are expanded first. The average centrality of node types is mea-
sured on the training set, according to the Freeman Betweenness
Centrality [41]. This boosts both positive effects of the BFS strategy.
To further reduce the number of possible orderings of a factor jV j,
we decided to always start from the same node, which is node 0 of
the original node numbering taken from the dataset. The other
nodes are then re-numbered according to the previous rules, mak-
ing a random choice in any case in which multiple permutations
are still possible. The latter two assumptions allow us to retain
one unique ordering, coming at the cost of a loss of generality.
Although this cost would likely be critical for a truly recurrent
model, it is sustainable in this learning framework, in which the
correlation between two steps is limited to the output of the first
shaping the input of the second. The only input to the model, in
fact, is represented by the graph itself, regardless to the many pos-
sible sequences of steps that may have brought to its current
shape.
4. Experimental methodology

We performed a series of experiments, testing our model on the
QM9 [42], and Zinc[43]datasets, two common benchmarks for the
generation of graphs representing small organic molecules, which
are introduced in Subsection4.1. SubSection 4.2 describes the
model setup, deals with the hyperparameters, and introduces the
experiments we performed. The evaluation methods are described
in SubSection 4.3, while Subsection 4.4 contains the results, the
comparisons with other models, and the considerations on their
significance.

4.1. Dataset description

To evaluate our method, a set of experiments were run on the
Quantum Machine 9 (QM9) dataset [42], which is a subset of
GDB-17, a chemical universe of 166 billion molecules [44]. QM9
is an ideal benchmark for a new generative model for molecular
graphs, as most competitive methods in this area have been tested
on this dataset. It is composed of 133,885 compounds, made of up



Fig. 1. Flowchart of the generation algorithm. An example step is summarized, with the three GNN modules (M1, M2, M3), the three problems they are assigned to (P1, P2,
P3), their inputs and their outputs. Grey nodes represent carbon atoms, while yellow nodes represent hydrogen atoms. Green edges stand for candidate edges, while black
edges represent single bonds. C,H,N,O,F are the element symbols. Classes 1,2,3 represent single, double, and triple bonds, respectively. Red octagons stand for the stop decision
(M1) or the do not generate this edge decision (M3).

1 Code available at: https://github.com/PietroMSB/MG2N2
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to 9 heavy atoms (C,O,N,F), plus the hydrogens which are bound to
them, for a maximum size of 29 atoms. Each molecule is repre-
sented as an undirected graph, in which each vertex corresponds
to an atom and each edge corresponds to a chemical bond. The
label of each vertex represents the corresponding atom type,
through one-hot encoding, so that jTv j ¼ 5. The label of each edge
represents, through one-hot encoding, the type of chemical bond
connecting its two vertices, which can be either single, double or
triple, so that jTej ¼ 3. The output of the modules M1, M2 and
M3, defined in SubSection 3.2 have dimensions, respectively
jfstopg [ Tv j ¼ 6; jTej ¼ 3, and jfdisconnectedg [ Tej ¼ 4.

A random splitting procedure is applied to the dataset, in order
to obtain a training set, a test set, and a validation set, composed of
120,000, 10,000 and 3,885 molecular graphs, respectively. The val-
idation set is used, during the training phase, to evaluate the per-
formance of our models on data that are not provided to them
directly. The held-out test set allows us to compare the statistics
of our sets of generated graphs to the statistics of ground-truth
graphs which have never been seen by our generative model,
assessing the capability of the model of reproducing the chemical
characteristics of QM9 compounds.

Inside each graph, the nodes are re-numbered according to the
procedure described in Subsection 3.4. To determine the order
among the neighbors Neðv iÞ of a generic v i 2 V , the average Free-
man Betweenness Centrality is measured on the 120,000 training
graphs, obtaining the following values: FBC(Hydrogen) = 0.0, FBC
(Fluorine) = 0.0, FBC(Oxygen) = 0.115, FBC(Nitrogen) = 0.246, FBC
(Carbon) = 0.382.

For a further assessment of the generative performance of our
model, a second set of experiments is carried out on the Zinc
[43] dataset. This is composed of 249,455 organic molecules of
up to 38 heavy atoms (C,O,N,F,P,S,Cl,I,Br). Ring bonds are explicitly
labeled as aromatic when part of an aromatic ring. As a conse-
quence, in this setup, we have jTv j ¼ 9, and jTej ¼ 4. The dataset
is split into a training set, a test set, and a validation set of
230,000, 10,000, 9,455 molecular graphs, respectively. The train-
ing/validation/test procedure is the same described for QM9. The
246
nodes in each single molecular graph are also re-numbered with
the same algorithm.

4.2. Experimental setup

The code for training the GNNs [45] and generating graphs 1

was implemented using Tensorflow [46]. The experiments on QM9,
were carried out in the following setup. All the training runs of mod-
ule M1 were issued on a Nvidia Tesla-V100 GPU, with 32 GB dedi-
cated memory. Training runs of modules M2 and M3 always took
place on a Nvidia 2080-Ti GPU. The training set was randomly split
in 20 batches of 6,000 graphs each, to reduce the memory require-
ments. All the experiments used the same split. During the genera-
tion of new graphs, even though all the three modules are kept in
memory, far less computational resources are needed. The genera-
tion sessions were run on the Nvidia 2080-Ti GPU, but required only
0.5 GB of memory. The experiments on Zinc were run on two Nvidia
Titan-RTX GPUs, each with 24 GB dedicated memory. The training
set was randomly split into 100 batches of 2,300 graphs each to fit
in memory.

Table 1 shows the configurations of the modules M1, M2, M3
used in the QM9 experiments, which include the neighbor aggrega-
tion function, the training epochs, the initial learning rate, the
maximum number of iterations for state convergence, and the
number of hidden units of the state network and the output net-
work. Each GNN module is composed of a state and an output net-
work. The former is a two-layered MLP implementing the state
updating function described in Eq. (4). The latter is another two-
layered MLP, implementing Eq. (5) in M1, and Eq. (6) in M2 and
M3. The initial values M1(I), M2(I) and M3(I) in Table 1 were
obtained through a preliminary experimentation, with the goal of
maximizing the accuracy of the modules M1, M2, M3, each one
independently from the others, on the validation set. Just as if
the modules had been classifiers, accuracy was calculated as the



Table 1
Different module configurations for QM9 are identified by the module number M1, M2 or M3 introduced in SubSection 3.2, and by a sequential version number (I, II, . . .).
Hyperparameters correspond to: neighbor aggregation function (Aggregation), training epochs (Epochs), initial learning rate (LR), maximum state convergence iterations (kmax),
hidden units of the state network (HUstate), and hidden units of the output network (HUout). M3 versions marked with * were trained with class weights to balance the
supervisions.

Module Aggregation Epochs LR kmax HUstate HUout

M1(I) sum 700 4� 10�3 5 30 50

M1(II) sum 1500 2� 10�3 6 100 60

M1(III) sum 2000 1� 10�5 6 100 60

M2(I) avg 500 2� 10�3 3 20 50

M2(II) avg 1000 1� 10�3 4 40 60

M3(I) avg 500 2� 10�3 6 20 50

M3(II) sum 500 2� 10�3 6 20 50

M3(III)* avg 500 2� 10�3 6 20 50

M3(IV)* sum 500 2� 10�3 6 20 50
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percentage of correct outputs, according to the single step supervi-
sion, and regardless of molecule validity.

For the Gumbel softmax annealing path, based on [35], we ini-
tially chose a linear descent from smax ¼ 5:0 to smin ¼ 1:0 during
training. Tests on different linear configurations did not bring
improvements. In particular, annealing to temperatures s < 1:0
brought the model to an unwanted repetitive behavior. Therefore,
we kept the initial annealing path for all the successive training
runs. All the models were trained with an Adam optimizer [47]
and cross-entropy loss, which does not require adjustments to
work with the Gumbel softmax output layers.
4.3. Evaluation

The evaluation of generation performance is twofold. On the
one hand, the metrics for unconditional generation introduced in
[28] are used to measure the validity, uniqueness and novelty of
the generated graphs. On the other hand, the distributions of the
chemical properties of the compounds can be compared to those
measured on the test set, assessing the model’s capability of repro-
ducing the characteristics of QM9 compounds. Both evaluations
are carried out on batches of 10,000 generated graphs.

Let Gen be the set2 of generated compounds, Val#Gen be the
subset of chemically valid compounds, and QM9 be the set of mole-
cules in the dataset. Validity is calculated as the fraction of chemi-
cally valid molecules over the total generated molecules:
Validity ¼ jValj=jGenj. Uniqueness is the fraction of unique molecules
among the valid ones: Uniqueness ¼ juniqðValÞj=jValj, where uniq is a
function that takes in input a multiset and returns the corresponding
set, from which the duplicates are removed. Novelty is the fraction of
unique molecules which do not match any QM9 compound:
Novelty ¼ ðjuniqðValÞj � juniqðValÞ \ QM9jÞ=juniqðValÞj. We also
define an additional measure, that combines the three previous met-
rics and accounts for the fraction of valid, unique and novel mole-
cules over the total generated ones:
VUN ¼ Validity� Uniqueness� Novelty.3

The chemical properties include the molecular weight of each
compound, the logarithmic octanol/water partition coefficient
(logP) [48], and the quantitative estimate of drug-likeness (QED)
score [49]. The logP coefficient quantifies the solubility of a mole-
cule in polar or non-polar solvents, while the QED score assesses
2 More precisely, here we are using the multiset, an extension of the standard se
which can contain multiple copies of the same instances.

3 The goals of optimizing validity, uniqueness or novelty are usually in contras
with each other. For instance, improving novelty often comes at the cost of decreasing
validity. For this reason, we decided to introduce the new metric VUN, which, by
combining the three measures, may provide a more global view on the performance
of a model.

4 A systematic search on a grid of configurations was computationally infeasible
Moreover, since the generative models are evaluated with antagonist metrics, it is
impossible to optimize the configuration for all of them. Thus, we have heuristically
selected the most promising solutions and reported those experiments which, in ou
opinion, are the most interesting.
t

t
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the drug-likeness of a compound, summarizing in a single measure
the following chemical descriptors: polar surface area, molecular
weight, logP, number of rotatable bonds, numbers of hydrogen
bond donors and acceptors, number of aromatic rings, potential
structural issues.

The validity as well as the chemical properties of each com-
pound are assessed with the RDKit package [50]. In order to deter-
mine the uniqueness and novelty of a molecule, we resorted to the
graph isomorphism function of the NetworkX package [51].
4.4. Results and discussion

The first experiment, which was carried out on the QM9 dataset,
consisted in a study of the role played in the algorithm by the
hyperparameter jV jmax which controls the maximum number of
nodes in a generated graph. In principle, our model, being trained
step by step, can extend its generation procedure for an arbitrary
number of iterations, until it stops itself on a complete molecule.
This feature could be exploited to extend the generation domain
to molecules which are larger than those seen during training,
while retaining the same generic patterns. Using M1(I), M2(I)
and M3(I), defined in Table 1, we explored different thresholds
for the maximum number of generated nodes jV jmax. The natural
value for this dataset is jV jmax ¼ 29, which corresponds to the lar-
gest graph size in the training set. As described in Section 3.1,
the generation procedure stops when the number of vertices
reaches jV jmax. This means that any graph still incomplete at that
point will not correspond to a valid molecule. Intuitively, raising
jV jmax will increase the amount of valid generated compounds.
Even if this is confirmed by the results reported in Table 2, the
additional valid molecules, being heavier than average, alter the
property distributions of the batch. Moreover, as shown in Fig. 2,
their QED is below average. Falling in a region of low to very-low
drug-likeness, these compounds are not useful in the scope of gen-
erating new potential drugs. These considerations suggested to
keep jV jmax ¼ 29 for the subsequent experiments.

Starting from the baseline configuration C1 (see Table 4), in
which the modules are optimized separately and not on the evalu-
ation metrics chosen for our task, we explored the hyperparameter
space in search of a better configuration.4 The first step consisted in
increasing kmax and the number of hidden units in the first two mod-
ules, in order for them to better capture complex molecular patterns
during training. Using this new configuration (M1(II) and M2(II)), we
.

r



Table 2
Higher values of jV jmax , on generation batches from the same model setup, produce more valid and unique compounds. The divergence of average QED and molecular weight from
the values taken on the validation set (0.478 and 127.5, respectively), however, suggests that the best configuration is jV jmax ¼ 29.

Max size Validity Uniqueness Avg. QED Avg. Mol. Wt.

29 0.491 0.813 0.448 124.6
40 0.593 0.845 0.438 144.7
80 0.688 0.866 0.408 172.9

1000 0.781 0.879 0.366 231.3

Fig. 2. Logarithm of the molecular weight (left) and QED (right) distributions of generated graphs with different values of jV jmax . It can be observed how higher thresholds
imply the generation of heavier compounds, with lower QED..
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explored different setups for M3. In particular, to establish the ideal
neighbor aggregation method, M3(I) was compared to M3(II). Then,
the same comparison was repeated on M3(III) and M3(IV), which
were trained with class weighted supervisions.5 This latter measure
was meant to decrease the learning bias from the very unbalanced
prior class probability distribution, which could prevent the model
from learning the chemical rules (roughly, 97% of the examples
belong to the disconnected class, while the other 3% are distributed
over the three bond types). The results of these configurations can
be observed in Table 3.

This balancing strategy for module M3 did not bring advan-
tages, as it is shown in Table 3. This suggests that the GNN can deal
with the unbalanced distribution, and efforts to improve the gener-
ation performance should focus on other parameters. Besides, the
two neighbor aggregation methods appear to be equivalent. A
new version of the node generation module, M1(III) was also
trained, increasing the number of training epochs and decreasing
the initial learning rate (see Table 1), in order to stabilize the learn-
ing process and avoid early suboptimal solutions. The relevant set-
ups of our model, produced in these experiments, are summarized
in Table 4.

Table 5 compares the results achieved by the most interesting
configurations of the proposed MG2N2 to various baselines, includ-
ing the state of the art for unconditional generation on QM9 (see
Subsection 4.3 for the metrics). In particular, we compared to:
ChemVAE [25], which is based on SMILES strings, and represents
a good baseline which does not exploit a graph representation;
GrammarVAE [26] which is also based on SMILES, and exploits
the grammar of this string representation of molecules; MolGAN
[33], which is the best sequential model on this dataset; and
GraphVAE [28], which is a very competitive (VAE based) method;
5 The error on each pattern is multiplied by the inverse of the prior of its target
class. In this way, the GNN will tend to produce a balanced output over all the classes.
At test time, the output is re-multiplied by the vector of prior class probabilities, to
restore this important piece of information.
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MPGVAE [52], a VAE approach in which both the encoder and
the decoder are Message Passing Neural Networks[18]. The aver-
age values and standard deviations of the chemical descriptors
are compared to the equivalent measures from the test set. As
for the MolGAN approach [33], our model does not include the
computation of likelihood, nor is it optimized for the global recon-
struction of the training examples, as VAEs do.6 The lack of an expli-
cit global reconstruction penalty is one of the reasons for the very
high novelty of the material produced by MG2N2: the model is not
forced to perfectly reconstruct the molecules on a global basis, but
it is forced to correctly reconstruct the local parts of the graph. This
approach is expected to preserve a certain degree of validity while
encouraging the model to explore more different molecular patterns.
Though GraphVAE and MolGAN have higher validity, our model out-
performs both of them in terms of uniqueness of the compounds.
MPGVAE almost reaches the validity shown by MolGAN, while also
achieving good uniqueness, and novelty, and outperforming the
other approaches. This advantage is mainly due to the message pass-
ing steps performed on the graph in the encoding/decoding pipeline.
The aggregated VUN score shows that MG2N2 generates the highest
percentage of molecules which are valid, unique, and novel at the
same time. Notice that, differently to all of the baselines, our method
explicitly generates the hydrogen atoms, and all of the hydrogens are
required to have been explicitly generated to mark a molecule as
valid. This difference is one of the factors determining the lower per-
formance of our approach on the validity metric.

To further assess the chemical similarity between the generated
material and the test set of molecules from QM9, we plotted the
distributions of the chemical descriptors, which can be observed
in Fig. 3. For a qualitative visual comparison, showing the similar-
6 VAEs learn to reconstruct the training examples as closely as possible. The
econstruction penalty is calculated on a global basis, as the Kullback–Leibler
ivergence between the example graph and its reconstructed version. As the KL-
ivergence cannot be directly optimized, due to the presence of intractable terms,
AEs optimize the Evidence Lower BOund (ELBO) of these terms, which provides a
aluable method to enforce a good global reconstruction.
r
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Table 3
Alternative setups for M3 on QM9. Balancing weights bring no advantage on model performance. The two aggregation functions show equivalent results.

M3 Module M3 Agg. M3 Wts. Validity Uniqueness Avg. QED Avg. Mol. Wt.

M3(I) avg no 0.511 0.888 0.461 134.8
M3(II) sum no 0.507 0.887 0.460 135.1
M3(III) avg yes 0.476 0.892 0.459 134.2
M3(IV) sum yes 0.499 0.888 0.460 134.3

Table 4
Summary of the best configurations determined by preliminary experiments on QM9. C3 produces more valid molecules, while the highest QED is obtained by C2. C1 has the
closest average molecular weight to the validation set reference (127.5).

Config. M1 M2 M3 Validity Uniqueness Avg. QED Avg. Mol. Wt.

C1 M1(I) M2(I) M3(I) 0.491 0.813 0.448 124.6
C2 M1(II) M2(II) M3(I) 0.511 0.888 0.461 134.8
C3 M1(III) M2(II) M3(II) 0.668 0.340 0.404 75.3

Table 5
Validity, Uniqueness, and Novelty of generated compounds assessing the quality of our models and the baselines on the QM9 dataset. The average values of chemical descriptors
(Molecular Weight, logP, and QED) are compared to the same quantities measured over the test set. Standard deviations are reported between parentheses. Metrics for
GrammarVAE, ChemVAE and GraphVAE are taken from the GraphVAE article [28]. The performance of MolGAN [33]and MPGVAE [52] are taken from their respective papers.

Model Valid Unique Novel VUN Avg. QED Avg. logP Avg. Mol. Wt.

ChemVAE 0.103 0.675 0.900 0.063 – – –
MPGVAE 0.910 0.680 0.540 0.334 – – –

GrammarVAE 0.602 0.093 0.809 0.045 – – –
GraphVAE 0.557 0.760 0.616 0.261 – – –
MolGAN 0.981 0.104 0.942 0.096 – – –

Ours(C2) 0.511 0.888 1.000 0.454 0.461 (0.116) 0.272 (1.336) 134.8 (45.7)
Ours(C3) 0.668 0.340 1.000 0.227 0.404 (0.088) 0.238 (1.093) 75.3 (52.8)

Test – – – – 0.482 (0.096) 0.270 (1.325) 127.3 (7.6)

Fig. 3. logP (left) and QED (right) distributions of generated graphs and training/test molecules. It can be observed howwell C2 has generalized the chemical characteristics of
the compounds seen during training..
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ity between test set graphs and generated graphs we extracted
some valid molecules at random from each set and plotted their
structural formulas with RDKit (see Fig. 4).

While achieving an acceptable logP distribution, configuration
C3 fails to reproduce the QED distribution of the test set. Configu-
ration C2, instead, generates compounds which have very similar
logP and QED distributions with respect to those of the test set.
This is due to the further optimization carried out on C3: while
achieving the goal of building more valid compounds, it actually
went in contrast with the other objectives of generating unique,
novel molecules with QM9-like properties. The learning parame-
ters proved to have a role in determining the properties of the
model, as we can see by comparing C2 and C3. C2 can be consid-
ered as our best model configuration for QM9.
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To further assess the performance of our model, a set of exper-
iments was carried out on the Zinc dataset. An optimization proce-
dure analogous to the one described in Subsection 4.2 for QM9
allowed to set up the three modules independently. The hyperpa-
rameters were then optimized according to the VUN aggregated
score. The best model configuration, which was used for the final
experiment, is reported in Table 6.

To determine the best network parameters for the experiments
on Zinc, we started from the best model configuration on QM9, and
performed a small grid search in their vicinity, as a more extensive
parameter search would have had an infeasible time and computa-
tional cost. It can be noticed that modules M1 and M2 required an
increased number of parameters to converge, with respect to the
QM9 case. This is due to the larger size of the Zinc molecular



Fig. 4. Grid representation of random samples of 14 valid molecular graphs generated with configuration C2 (a), 14 valid molecular graphs generated with configuration C3
(b), and 14 molecular graphs from the QM9 test set (c)..

Table 6
Module configurations used in the Zinc experiment, identified by the module number M1, M2 or M3 introduced in SubSection 3.2. Hyperparameters correspond to: neighbor
aggregation function (Aggregation), training epochs (Epochs), initial learning rate (LR), maximum state convergence iterations (kmax), hidden units of the state network (HUstate),
and hidden units of the output network (HUout).

Module Aggregation Epochs LR kmax HUstate HUout

M1(Zinc) sum 2000 10�3 6 150 80

M2(Zinc) avg 1000 10�3 4 50 70

M3(Zinc) avg 500 2� 10�3 6 20 50
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graphs (up to 38 heavy atoms) compared to the QM9 ones (up to 9
heavy atoms), and to the larger number of node and edge types.
The larger size of Zinc molecules also implies a longer generation
sequence (on wider graphs), which added to the larger number
of examples, and to the larger number of network parameters,
multiplies the time and memory burden of each experiment. For
this reason, we limited the experimentation on Zinc to the compar-
ison with other models in the literature. Table 7 reports the perfor-
mance of competitive models which were tested for unconditional
generation on Zinc, according to the Validity, Uniqueness, and
Novelty metrics defined in the GraphVAE paper [28], and to the
VUN aggregated score defined in Subsection 4.3. In particular,
our model is compared to GraphVAE, ChemVAE [25], GrammarVAE
[26], and the state of the art approach CGVAE [53]. The large differ-
ence in performance between CGVAE and the other methods is lar-
gely justified by the different approach to the problem. In CGVAE,
molecules are kekulized during the preprocessing stage, thus aro-
matic bonds are reduced to either single or double bonds. The
250
other hard chemical laws, like valence rules, that would invalidate
the generated molecule if violated, are enforced as hard con-
straints, preventing the possibility of generating invalid molecules
[53]. In all the other reported methods, including ours, these rules
are learned by the model. Contrarily to what happened on QM9, in
this case our model outperforms the standard VAE baselines
thanks to the higher validity. This suggests that, as the number
of atom types grows, the importance of generating the atoms
sequentially and re-examining the output graph at each step, also
grows..

5. Conclusions

In this article, we introduced a generative model for molecular
graphs: Molecule Generative Graph Neural Network (MG2N2), and
a sequential generation algorithm we devised for this purpose. The
novelty of our approach consists in exploiting the capabilities of
Graph Neural Networks to natively process graph-structured data.



Table 7
Validity, Uniqueness, and Novelty of generated compounds assessing the quality of our model and the baselines on the Zinc dataset. The performance of the other models are
taken from the CGVAE article[53]

Model Valid Unique Novel VUN

GrammarVAE [26] 0.310 0.108 1.000 0.033
ChemVAE [25] 0.170 0.310 0.980 0.052
GraphVAE [28] 0.140 0.316 1.000 0.044
CGVAE [53] 1.000 0.998 1.000 0.998

Ours 0.753 0.107 1.000 0.081
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This allows to use the graph output of the previous step as the net-
work input, which represents an advantage with respect to other
sequential methods, that mainly rely on the sequence of previous
decisions, rather than on the graph they produce. The modularity
of our model implies an easier, less resource demanding, learning
process.

In line with all the other sequential methods, and contrarily to
VAEs, the generation process is easily interpretable: the steps in
which errors occur, or in which specific atoms and bonds are cre-
ated, can be readily identified in the generation sequence. This fea-
ture is very important as it simplifies any process of improvement
or repurposing of the model.

The model was tested on a benchmark generation task over the
QM9 dataset. The distributions of the chemical descriptors retraced
those measured on the held out test set. The quality of generated
graphs proved to be very high, allowing our model to outperform
very competitive baselines. The same performance level was
observed also on the Zinc dataset, when comparing our model to
similar approaches.

Future work will focus on generalizing the model to other
molecular graph generation problems, and on extending the pre-
sent approach to conditional generation. A conditional generation
model could be implemented by concatenating a vector of desired
properties to the input of each module. The comparison with a
completely different approach, like CGVAE, which simplifies the
generation problem by enforcing chemical rules as hard con-
straints, suggests that a constrained, or fragment-based, version
of our model could improve the performance on datasets of larger
molecules, like Zinc. Moreover, studying a theoretical mathemati-
cal formulation of sequential generation is also an important mat-
ter of future research.
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